Low-Energy Electron Diffractive Imaging Based on a Single-Atom Electron Source
نویسندگان
چکیده
منابع مشابه
Atom-scale ptychographic electron diffractive imaging of boron nitride cones.
Ptychographic coherent diffractive imaging (CDI) has been extensively applied using both x rays and electrons. The extension to atomic resolution has been elusive. This Letter demonstrates ptychographic electron diffractive imaging at atomic resolution, permitting identification of structure in a boron nitride helical cone at a resolution of order 1 Å, beyond that of comparative Z-contrast imag...
متن کاملSingle-atom electron energy loss spectroscopy of light elements
Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on p...
متن کاملDynamics of a single-atom electron pump
Single-electron pumps based on isolated impurity atoms have recently been experimentally demonstrated. In these devices the Coulomb potential of an atom creates a localised electron state with a large charging energy and considerable orbital level spacings, enabling robust charge capturing processes. In contrast to the frequently used gate-defined quantum dot pumps, which experience a strongly ...
متن کاملSingle-electron shuttle based on electron spin.
A nanoelectromechanical device based on magnetic exchange forces and electron spin flips induced by a weak external magnetic field is suggested. It is shown that this device can operate as a new type of single-electron "shuttle" in the Coulomb blockade regime of electron transport.
متن کاملAn on-demand coherent single-electron source.
We report on the electron analog of the single-photon gun. On-demand single-electron injection in a quantum conductor was obtained using a quantum dot connected to the conductor via a tunnel barrier. Electron emission was triggered by the application of a potential step that compensated for the dot-charging energy. Depending on the barrier transparency, the quantum emission time ranged from 0.1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microscopy and Microanalysis
سال: 2015
ISSN: 1431-9276,1435-8115
DOI: 10.1017/s1431927615004997